Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Obes Res Clin Pract ; 18(2): 81-87, 2024.
Article in English | MEDLINE | ID: mdl-38582736

ABSTRACT

The BMI predicts mortality and cardiovascular disease (CVD) in the general population, while in patients with end-stage chronic kidney disease (CKD) a high BMI is associated with improved survival, a phenomenon referred to as the "obesity paradox". While BMI is easy to determine and helps to categorize patients, it does not differentiate between fat tissue, lean tissue and bone mass. As the BMI may be altered in CKD, e.g. by muscle wasting, we determined in this meta-analysis (i) the association of mortality with fat tissue quantity in CKD and (ii) the association of mortality with abdominal obesity (as measured by waist circumference (WC) or waist-to-hip ratio (WHR)) in CKD. We systematically reviewed databases for prospective or retrospective cohort studies. In eleven studies with 23,523 patients the association between mortality and high fat tissue quantity in CKD was calculated. The pooled hazard ratio (HR) for this association in the CKD group in the dialysis group 0.91 (CI 0.84- 0.98, p = 0.01) which is comparable to the HR for the association with BMI. The HR in patients without dialysis was 0.7 (95% CI 0.53- 0.93, p = 0.01), suggesting a better risk prediction of high fat tissue content with mortality as compared to higher BMI with mortality in patients with CKD without dialysis. Importantly, both BMI and fat tissue quantity in CKD are described by the "obesity paradox": the higher the fat tissue content or BMI, the lower the mortality risk. In thirteen studies with 55,175 patients the association between mortality and high WC or WHR in CKD (with or without dialysis) was calculated. We observed, that the HR in the WHR group was 1.31 (CI 1.08-1.58, p = 0.007), whereas the overall hazard ratio of both groups was 1.09 (CI 1.01-1.18, p = 0.03), indicating that a higher abdominal obesity as measured by WHR is associated with higher mortality in CKD. Our analysis suggests gender-specific differences, which need larger study numbers for validation. This meta-analysis confirms the obesity paradox in CKD using fat tissue quantity as measure and further shows that using abdominal obesity measurements in the routine in obese CKD patients might allow better risk assessment than using BMI or fat tissue quantity. Comparable to the overall population, here, the higher the WHR, the higher the mortality risk.


Subject(s)
Body Mass Index , Renal Insufficiency, Chronic , Waist Circumference , Waist-Hip Ratio , Humans , Adipose Tissue , Cardiovascular Diseases/mortality , Cardiovascular Diseases/etiology , Obesity/complications , Obesity/physiopathology , Obesity/mortality , Obesity, Abdominal/complications , Obesity, Abdominal/mortality , Renal Dialysis , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/mortality , Renal Insufficiency, Chronic/therapy , Risk Factors
2.
Cardiovasc Res ; 119(18): 2875-2883, 2024 02 17.
Article in English | MEDLINE | ID: mdl-38367274

ABSTRACT

Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease worldwide. The pathomechanisms of DKD are multifactorial, yet haemodynamic and metabolic changes in the early stages of the disease appear to predispose towards irreversible functional loss and histopathological changes. Recent studies highlight the importance of endoplasmic reticulum-mitochondria-associated membranes (ER-MAMs), structures conveying important cellular homeostatic and metabolic effects, in the pathology of DKD. Disruption of ER-MAM integrity in diabetic kidneys is associated with DKD progression, but the regulation of ER-MAMs and their pathogenic contribution remain largely unknown. Exploring the cell-specific components and dynamic changes of ER-MAMs in diabetic kidneys may lead to the identification of new approaches to detect and stratify diabetic patients with DKD. In addition, these insights may lead to novel therapeutic approaches to target and/or reverse disease progression. In this review, we discuss the association of ER-MAMs with key pathomechanisms driving DKD such as insulin resistance, dyslipidaemia, ER stress, and inflammasome activation and the importance of further exploration of ER-MAMs as diagnostic and therapeutic targets in DKD.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Insulin Resistance , Humans , Mitochondria/metabolism , Diabetic Nephropathies/diagnosis , Diabetic Nephropathies/etiology , Diabetic Nephropathies/metabolism , Mitochondria Associated Membranes , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress/physiology , Diabetes Mellitus/metabolism
3.
Kidney Int ; 103(2): 304-319, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36309126

ABSTRACT

Dysfunction of mesangial cells plays a major role in the pathogenesis of diabetic kidney disease (DKD), the leading cause of kidney failure. However, the underlying molecular mechanisms are incompletely understood. By unbiased gene expression analysis of glucose-exposed mesangial cells, we identified the transmembrane receptor CD248 as the most upregulated gene, and the maladaptive unfolded protein response (UPR) as one of the most stimulated pathways. Upregulation of CD248 was further confirmed in glucose-stressed mesangial cells in vitro, in kidney glomeruli isolated from diabetic mice (streptozotocin; STZ and db/db models, representing type 1 and type 2 diabetes mellitus, respectively) in vivo, and in glomerular kidney sections from patients with DKD. Time course analysis revealed that glomerular CD248 induction precedes the onset of albuminuria, mesangial matrix expansion and maladaptive UPR activation (hallmarked by transcription factor C/EBP homologous protein (CHOP) induction) but is paralleled by loss of the adaptive UPR regulator spliced X box binding protein (XBP1). Mechanistically, CD248 promoted maladaptive UPR signaling via inhibition of the inositol requiring enzyme 1α (IRE1α)-mediated transcription factor XBP1 splicing in vivo and in vitro. CD248 induced a multiprotein complex comprising heat shock protein 90, BH3 interacting domain death agonist (BID) and IRE1α, in which BID impedes IRE1α-mediated XBP1 splicing and induced CHOP mediated maladaptive UPR signaling. While CD248 knockout ameliorated DKD-associated glomerular dysfunction and reverses maladaptive unfolded protein response signaling, concomitant XBP1 deficiency abolished the protective effect in diabetic CD248 knockout mice, supporting a functional interaction of CD248 and XBP1 in vivo. Hence, CD248 is a novel mesangial cell receptor inducing maladaptive UPR signaling in DKD.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Animals , Mice , Antigens, CD/metabolism , Antigens, Neoplasm , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/genetics , Diabetic Nephropathies/genetics , Endoribonucleases/genetics , Endoribonucleases/metabolism , Protein Serine-Threonine Kinases/genetics , Transcription Factors/metabolism , Unfolded Protein Response , Humans
4.
Nutrients ; 14(15)2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35893913

ABSTRACT

It is controversial whether lifestyle-induced weight loss (LIWL) intervention provides long-term benefit. Here, we investigated whether the degree of weight loss (WL) in a controlled LIWL intervention study determined the risk of prediabetes and recurrence of metabolic syndrome (MetS) during a 5-year follow-up. Following LIWL, 58 male participants (age 45−55 years) were divided into four quartiles based on initial WL: Q1 (WL 0−8.1%, n = 15), Q2 (WL 8.1−12.8%, n = 14), Q3 (WL 12.8−16.0%, n = 14), and Q4 (WL 16.0−27.5%, n = 15). We analyzed changes in BMI, HDL cholesterol, triglycerides (TGs), blood pressure, and fasting plasma glucose (FPG) at annual follow-up visits. With a weight gain after LIWL between 1.2 (Q2) and 2.5 kg/year (Q4), the reduction in BMI was maintained for 4 (Q2, p = 0.03) or 5 (Q3, p = 0.03; Q4, p < 0.01) years, respectively, and an increase in FPG levels above baseline values was prevented in Q2−Q4. Accordingly, there was no increase in prediabetes incidence after LIWL in participants in Q2 (up to 2 years), Q3 and Q4 (up to 5 years). A sustained reduction in MetS was maintained in Q4 during the 5-year follow-up. The present data indicate that a greater initial LIWL reduces the risk of prediabetes and recurrence of MetS for up to 5 years.


Subject(s)
Metabolic Syndrome , Prediabetic State , Follow-Up Studies , Humans , Life Style , Male , Metabolic Syndrome/epidemiology , Middle Aged , Prediabetic State/epidemiology , Weight Loss/physiology
5.
Nutrients ; 14(14)2022 Jul 06.
Article in English | MEDLINE | ID: mdl-35889743

ABSTRACT

Diabetes mellitus is hallmarked by accelerated atherosclerosis, a major cause of mortality among patients with diabetes. Efficient therapies for diabetes-associated atherosclerosis are absent. Accelerated atherosclerosis in diabetic patients is associated with reduced endothelial thrombomodulin (TM) expression and impaired activated protein C (aPC) generation. Here, we directly compared the effects of high glucose and oxidized LDL, revealing that high glucose induced more pronounced responses in regard to maladaptive unfolded protein response (UPR), senescence, and vascular endothelial cell barrier disruption. Ex vivo, diabetic ApoE-/- mice displayed increased levels of senescence and UPR markers within atherosclerotic lesions compared with nondiabetic ApoE-/- mice. Activated protein C pretreatment maintained barrier permeability and prevented glucose-induced expression of senescence and UPR markers in vitro. These data suggest that high glucose-induced maladaptive UPR and associated senescence promote vascular endothelial cell dysfunction, which-however-can be reversed by aPC. Taken together, current data suggest that reversal of glucose-induced vascular endothelial cell dysfunction is feasible.


Subject(s)
Atherosclerosis , Diabetes Mellitus , Endoplasmic Reticulum Stress , Animals , Atherosclerosis/etiology , Atherosclerosis/physiopathology , Cellular Senescence , Glucose/pharmacology , Mice , Mice, Inbred C57BL , Mice, Knockout, ApoE , Protein C
6.
Metabolites ; 11(8)2021 Aug 09.
Article in English | MEDLINE | ID: mdl-34436467

ABSTRACT

Bone-derived osteocalcin has been suggested to be a metabolic regulator. To scrutinize the relation between osteocalcin and peripheral insulin sensitivity, we analyzed changes in serum osteocalcin relative to changes in insulin sensitivity, low-grade inflammation, and bone mineral density following lifestyle-induced weight loss in individuals with metabolic syndrome (MetS). Participants with MetS were randomized to a weight loss program or to a control group. Before and after the 6-month intervention period, clinical and laboratory parameters and serum osteocalcin levels were determined. Changes in body composition were analyzed by dual-energy X-ray absorptiometry (DXA). In participants of the intervention group, weight loss resulted in improved insulin sensitivity and amelioration of inflammation. Increased serum levels of osteocalcin correlated inversely with BMI (r = -0.63; p< 0.001), total fat mass (r = -0.58, p < 0.001), total lean mass (r = -0.45, p < 0.001), C-reactive protein (CRP) (r = -0.37; p < 0.01), insulin (r = -0.4; p < 0.001), leptin (r = -0.53; p < 0.001), triglycerides (r = -0.42; p < 0.001), and alanine aminotransferase (ALAT) (r = -0.52; p < 0.001). Regression analysis revealed that osteocalcin was independently associated with changes in CRP but not with changes in insulin concentration, fat mass, or bone mineral density, suggesting that weight loss-induced higher serum osteocalcin is primarily associated with reduced inflammation.

7.
J Am Soc Nephrol ; 31(8): 1762-1780, 2020 08.
Article in English | MEDLINE | ID: mdl-32709711

ABSTRACT

BACKGROUND: Diabetic nephropathy (dNP), now the leading cause of ESKD, lacks efficient therapies. Coagulation protease-dependent signaling modulates dNP, in part via the G protein-coupled, protease-activated receptors (PARs). Specifically, the cytoprotective protease-activated protein C (aPC) protects from dNP, but the mechanisms are not clear. METHODS: A combination of in vitro approaches and mouse models evaluated the role of aPC-integrin interaction and related signaling in dNP. RESULTS: The zymogen protein C and aPC bind to podocyte integrin-ß3, a subunit of integrin-αvß3. Deficiency of this integrin impairs thrombin-mediated generation of aPC on podocytes. The interaction of aPC with integrin-αvß3 induces transient binding of integrin-ß3 with G α13 and controls PAR-dependent RhoA signaling in podocytes. Binding of aPC to integrin-ß3via its RGD sequence is required for the temporal restriction of RhoA signaling in podocytes. In podocytes lacking integrin-ß3, aPC induces sustained RhoA activation, mimicking the effect of thrombin. In vivo, overexpression of wild-type aPC suppresses pathologic renal RhoA activation and protects against dNP. Disrupting the aPC-integrin-ß3 interaction by specifically deleting podocyte integrin-ß3 or by abolishing aPC's integrin-binding RGD sequence enhances RhoA signaling in mice with high aPC levels and abolishes aPC's nephroprotective effect. Pharmacologic inhibition of PAR1, the pivotal thrombin receptor, restricts RhoA activation and nephroprotects RGE-aPChigh and wild-type mice.Conclusions aPC-integrin-αvß3 acts as a rheostat, controlling PAR1-dependent RhoA activation in podocytes in diabetic nephropathy. These results identify integrin-αvß3 as an essential coreceptor for aPC that is required for nephroprotective aPC-PAR signaling in dNP.


Subject(s)
Diabetic Nephropathies/prevention & control , Integrin beta3/physiology , Podocytes/physiology , Protein C/physiology , rhoA GTP-Binding Protein/physiology , Animals , Cytoprotection , Endothelial Protein C Receptor/physiology , GTP-Binding Protein alpha Subunits, G12-G13/physiology , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , Receptor, PAR-1/physiology
8.
Methods Mol Biol ; 2067: 153-173, 2020.
Article in English | MEDLINE | ID: mdl-31701452

ABSTRACT

A variety of pathophysiological cellular dysfunctions stress the endoplasmic reticulum (ER), promoting an accumulation of unfolded proteins in the ER lumen. The latter is sensed by intrinsic ER transmembrane proteins: IRE1α (inositol-requiring protein-1α), PERK (protein kinase RNA (PKR)-like ER kinase), and ATF6 (activating transcription factor 6) which when activated trigger the unfolded protein response (UPR), which includes an inhibition of protein translation while inducing specific transcription factors that induce genes aiming to relieve the ER stress response. Collectively, this reduces the burden of unfolded proteins within the ER, eventually restoring ER homeostasis and thus promoting cell survival and adaptation. However, under unresolvable ER stress conditions, the UPR promotes cell death. Diabetic nephropathy (dNP), a leading cause of end-stage renal disease in industrialized countries, is mechanistically closely linked with ER stress and renal cell death. Here, we describe methods (both in vivo and in vitro) for monitoring ER stress, UPR signaling, and cell death in renal cells by analyzing proteins and protein-protein interactions serving as markers of ER stress or cell death. These methods include visualization of interactions of UPR regulators by proximity ligation assay on renal tissue and cells and methods to detect cell death based on DNA fragmentation or fluorochrome substrates for caspases. We include two selected in vivo models to manipulate ER stress regulators and thus the UPR in murine models of dNP. Collectively, these analyses allow assessment of the activation of ER stress-induced signaling pathways and cell death in dNP and manipulation of the UPR in vivo, enabling researchers to probe for causality.


Subject(s)
Diabetic Nephropathies/pathology , Endoplasmic Reticulum Stress , Kidney/pathology , Protein Interaction Mapping/methods , Activating Transcription Factor 6/genetics , Activating Transcription Factor 6/metabolism , Animals , Apoptosis , Biopsy , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Type 1/chemically induced , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/pathology , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/pathology , Endoribonucleases/metabolism , Fluorescent Dyes/chemistry , Humans , Immunoassay/methods , In Situ Nick-End Labeling/methods , Mice , Mice, Transgenic , Paraffin Embedding , Protein Serine-Threonine Kinases/metabolism , Streptozocin/toxicity , Unfolded Protein Response , eIF-2 Kinase/metabolism
9.
Cell Stress Chaperones ; 20(5): 743-51, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26045202

ABSTRACT

Aging cells are characterized by a loss of proteostasis and a decreased ability to survive under environmental stress. Regulation of the UPR in aging cells has been under much scrutiny, and studies have shown that the UPR in these cells differs considerably from younger cells with regard to the induction of apoptosis and chaperone activity. The role of IRE-1 and PERK in UPR-associated apoptosis makes the regulation of these signaling cascades an important target of study. The seemingly contradictory findings regarding the role of P5 in activating and deactivating these responses warrant further investigation and may hold the key to unlocking the role of this protein in various pathological conditions. Another important target for study with regard to P5 is the effects of the localization of this protein in the mitochondria and the consequences, if any, of these effects on the activation of the UPR.


Subject(s)
Aging/physiology , Disulfides , Unfolded Protein Response/physiology , Animals , Apoptosis/physiology , Environment , Humans , Protein Disulfide-Isomerases/physiology , Proteostasis Deficiencies , Signal Transduction/physiology
10.
Interdiscip Sci ; 6(2): 133-9, 2014 Jun.
Article in English | MEDLINE | ID: mdl-25172451

ABSTRACT

Phytase is an enzyme that is found extensively in the plant kingdom and in some species of bacteria and fungi. This paper identifies and analyses the available full length sequences of ß-propeller phytases (BPP). BPP was chosen due to its potential applicability in the field of aquaculture. The sequences were obtained from the Uniprot database and subject to various online bioinformatics tools to elucidate the physio-chemical characteristics, secondary structures and active site compositions of BPP. Protparam and SOPMA were used to analyse the physiochemical and secondary structure characteristics, while the Expasy online modelling tool and CASTp were used to model the 3-D structure and identify the active sites of the BPP sequences. The amino acid compositions of the four sequences were compared and composed in a graphical format to identify similarities and highlight the potentially important amino acids that form the active site of BPP. This study aims to analyse BPP and contribute to the clarification of the molecular mechanism involved in the enzyme activity of BPP and contribute in part to the possibility of constructing a synthetic version of BPP.


Subject(s)
6-Phytase/chemistry , Amino Acids/analysis , Catalytic Domain , Amino Acid Sequence , Computational Biology , Computer Simulation , Databases, Factual , Protein Structure, Quaternary , Protein Structure, Secondary
SELECTION OF CITATIONS
SEARCH DETAIL
...